Let $-\infty<a<b<\infty$.
Proposition 5.12:
Let $f \in C^{2}((a, b))$ with $f^{\prime \prime} \geq 0$. Then we have far all $x_{0} \neq x_{1} \in(a, b), 0<t<1$ the inequality:

$$
\begin{equation*}
f\left(t x_{1}+(1-t) x_{0}\right) \leqslant t f\left(x_{1}\right)+(1-t) f\left(x_{0}\right) \tag{*}
\end{equation*}
$$

and the inequality is strict, if $f^{\prime \prime}>0$.
Proof:
i) Fix $x_{0} \neq x_{1} \in(a, b)$. Consider the function $g \in C^{2}([0,1])$:
with

$$
g(t)=f\left(t x_{1}+(1-t) x_{0}\right)-\left(t f\left(x_{1}\right)+(1-t) f\left(x_{0}\right)\right)
$$

$$
\begin{aligned}
& g(0)=g(1)=0, \\
& g^{\prime \prime}(t)=f^{\prime \prime}\left(t x_{1}+(1-t) x_{0}\right)\left(x_{1}-x_{0}\right)^{2} \geqslant 0,0 \leq t \leq 1
\end{aligned}
$$

Assume to the catrary,

$$
\max _{0 \leqslant t \leqslant 1} g(t)=g\left(t_{\max }\right)>0 \text {, where } 0<t_{\max }<1 \text {. }
$$

According to Corollary 5.3 we have

$$
g^{\prime}\left(t_{\text {max }}\right)=0
$$

\Rightarrow Prop. 5.11 gives $\tau \in\left(t_{\text {max }}, 1\right)$ s.t.

$$
\begin{aligned}
0=g(1)= & g\left(t_{\text {max }}\right)+g^{\prime}\left(t_{\text {max }}\right)\left(1-t_{\text {max }}\right) \\
& +g^{\prime \prime}(\tau) \frac{\left(1-t_{\text {max }}\right)^{2}}{2} \geqslant g\left(t_{\text {max }}\right)>0,
\end{aligned}
$$

\Rightarrow contradiction. Thus $g(t) \leqslant 0$ and the claim follows from the definition of g.
ii) Analogously, we obtain a contradiction if $f^{\prime \prime}>0$, if ane assumes that $g\left(t_{0}\right)=0$ for some $0<t_{0}<1$.
Definition 5.5:
A function $f:(a, b) \rightarrow \mathbb{R}$ with the property (*) is called "convex"; and "strictly convex", if we have

$$
\begin{aligned}
& \forall x_{0} \neq x_{1} \in(a, b), 0<t<1 \\
& \quad f\left(t x_{1}+(1-t) x_{0}\right)<t f\left(x_{1}\right)+(1-t) f\left(x_{0}\right)
\end{aligned}
$$

Remark 5.7:
i) Aparently, f is (strictly) convex if and ally if the "Epigraph" of f,

$$
\operatorname{epi}(f):=\{(x, y) \mid x \in(a, b), y \geqslant f(x)\} \subset \mathbb{R}^{2}
$$

is a (strictly) convex set.

ii) Prop. 5.12 gives a convenient criterion for the (strict) convexity of f.
Example 5.17:
i) The function $f(x)=|x|, x \in \mathbb{R}$, is convex.
ii) If $f, g:(a, b) \rightarrow \mathbb{R}$ are two convex functions, then $f+g:(a, b) \rightarrow \mathbb{R}$ is also convex, with $f_{k}:(a, b) \rightarrow \mathbb{R}, k \in \mathbb{N}$, also

$$
f=\sum_{k=1}^{\infty} f_{k}
$$

iii) $\exp ^{\prime \prime}=\exp >0$, therefore, \exp is strictly convex.
iv) Let $f(x)=x \log x, x>0$. We have

$$
f^{\prime}(x)=\log x+1, \quad f^{\prime \prime}(x)=\frac{1}{x}>0
$$

therefore f is strictly convex according to Prop. 5.12.
v) For a fixed number $\alpha>1$, let

$$
\begin{aligned}
& f(x)=x^{\alpha}=\exp (\alpha \log x), x>0 . A_{s} \\
& f^{\prime}(x)=\alpha x^{\alpha-1}, \quad f^{\prime \prime}(x)=\alpha(\alpha-1) x^{\alpha-2}>0,
\end{aligned}
$$ f is strictly convex according to Prop. 5.12.

The property (*) also holds for move than 2 points.
Proposition 5.13 (Jensen):
Let $f:(a, b) \rightarrow \mathbb{R}$ convex. Then we have for arbitrary points $x_{1}, \ldots, x_{N} \in(a, b)$ and numbers $0 \leqslant t_{1}, \cdots, t_{r} \leqslant 1$ with $\sum_{i=1}^{N} t_{i}=1$ the inequality

$$
f\left(\sum_{i=1}^{N} t_{i} x_{i}\right) \leqslant \sum_{i=1}^{N} t_{i} f\left(x_{i}\right)
$$

Proof (by Induction):
$N=1: \quad$ (also $N=2$ according to definition)

$$
N \rightarrow N+1: \text { Let } t_{1}<1
$$

set $x_{0}=\sum_{i=2}^{N+1} \frac{t_{i}}{1-t_{1}} x_{i}$
As f is convex, we obtain

$$
\begin{aligned}
f\left(\sum_{i=1}^{N+1} t_{i} x_{i}\right) & =f\left(t_{1} x_{1}+\left(1-t_{1}\right) x_{0}\right) \\
& \leq t_{1} f\left(x_{1}\right)+\left(1-t_{1}\right) f\left(x_{0}\right)
\end{aligned}
$$

According to induction assumption we have

$$
f\left(x_{0}\right)=f\left(\sum_{i=2}^{N+1} \frac{t_{i}}{1-t_{1}} x_{i}\right) \leqslant \sum_{i=2}^{N+1} \frac{t_{i}}{1-t_{1}} f\left(x_{i}\right)
$$

and the claim follows.
Example 5.18:
For all $0<x_{1}, \ldots, x_{n}<\infty, 0 \leqslant \alpha_{1}, \ldots, \alpha_{n} \leqslant 1$ with $\sum_{i=1}^{n} \alpha_{i}=1$ we have

$$
\prod_{i=1}^{n} x_{i}^{\alpha_{i}} \leq \sum_{i=1}^{n} \alpha_{i} x_{i}
$$

Proof:
As the function exp is convex, the claim follows from Prop. 5.13:

$$
\begin{aligned}
& \prod_{i=1}^{n} x_{i}^{\alpha_{i}}=\prod_{i=1}^{n} \exp \left(\alpha_{i} \log x_{i}\right) \\
& =\exp \left(\sum_{i=1}^{n} \alpha_{i} \log x_{i}\right) \\
& \stackrel{\text { Prop. 5.B }}{\leq} \sum_{i=1}^{n} \alpha_{i} \exp \left(\log x_{i}\right)=\sum_{i=1}^{n} \alpha_{i} x_{i}
\end{aligned}
$$

In particular, we obtain for $\alpha_{i}=\frac{1}{n}, 1 \leq i \leq n$,

$$
\sqrt[n]{\prod_{i=1}^{n} x_{i}} \leqslant \frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

§6. Numerical solution of equations
§6.1 A fix-point theorem
Often, one encounters the problem of solving an equation of the form $f(x)=x$, where $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function. We can use the following approximation method:

$$
x_{n}:=f\left(x_{n-1}\right) \text { for } n \geqslant 1
$$

If the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is well-defined and converges against $a \xi \in[a, b]$, then ξ is
a solution of the above equation, as from continuity of f we get

$$
\xi=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} f\left(x_{n-1}\right)=f(\xi)
$$

The following Proposition covers an important case in which the above procedure converges:
Proposition 6.1:
Let $D \subset \mathbb{R}$ be a closed interval and $f: D \rightarrow \mathbb{R}$ a differentiable function with $f(D) \subset D$. Furthermore, $\left|f^{\prime}(x)\right| \leqslant q$ for so $q<1$ and all $x \in D$. Let $x_{0} \in D$ be arbitrary and

$$
x_{n}:=f\left(x_{n-1}\right) \text { for } n \geqslant 1 \text {. }
$$

Then the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges against a unique solution $\xi \in D$ of the equation $f(\xi)=\xi$.

The following error estimate holds

$$
\left|\xi-x_{n}\right| \leqslant \frac{q}{1-q}\left|x_{n}-x_{n-1}\right| \leqslant \frac{q^{n}}{1-q}\left|x_{1}-x_{0}\right|
$$

Remark 6.1:
The method converges faster for smaller q. Suppose we have to solve the equation $F(x)=0$, where F is a differentiable function with continuous derivative.
\rightarrow set $f(x):=x-\frac{1}{c} F(x)$, where $F^{\prime}\left(x^{*}\right)=c \neq 0$
Choose x^{*} close to solution ξ of $F(\xi)=0$ $\Leftrightarrow f(\xi)=\xi$. We have $f^{\prime}\left(x^{*}\right)=0$, thus $\left|f^{\prime}(x)\right|$ is small far x sufficiently close to x^{*}.
Proof of Prop. 6.1:
i) From the mean value theorem we obtain

$$
\begin{aligned}
& |f(x)-f(y)| \leqslant q|x-y| \text { for all } x, y \in D \\
\Rightarrow & \left|x_{n+1}-x_{n}\right|=\left|f\left(x_{n}\right)-f\left(x_{n-1}\right)\right| \leqslant q\left|x_{n}-x_{n-1}\right|
\end{aligned}
$$

and by induction over n we get:

$$
\left|x_{n+1}-x_{n}\right| \leqslant q^{n}\left|x_{1}-x_{0}\right| \text { for } n \in \mathbb{N} \text {. }
$$

As

$$
x_{n+1}=x_{0}+\sum_{k=0}^{n}\left(x_{k+1}-x_{k}\right)
$$

and the sequence $\sum_{k=0}^{\infty}\left(x_{k+1}-x_{k}\right)$ converges (use for example quotient criterion), the limit

$$
\xi:=\lim _{n \rightarrow \infty} x_{n}
$$

exists. Furthermore, as D is closed, $\xi \in D$, and satisfies $\xi=f(\xi)$.
ii) "uniqueness":
suppose η is another solution of $\eta=f(\eta)$, then we get

$$
|\xi-\eta|=|f(\xi)-f(\eta)| \leqslant q|\xi-\eta|
$$

and from $q<1$ it follows that $|\xi-\eta|=0$, there fare $\xi=\eta$.
iii) "error estimate":

For all $n \geq 1$ and $k \geq 1$ we have

$$
\left|x_{n+k}-x_{n+k-1}\right| \leqslant q^{k}\left|x_{n}-x_{n-1}\right|
$$

As $\left\{-x_{n}=\sum_{k=1}^{\infty}\left(x_{n+k}-x_{n+k-1}\right)\right.$, we get

$$
\begin{aligned}
\left|\xi-x_{n}\right| & \leqslant \sum_{k=1}^{\infty} q^{k}\left|x_{n}-x_{n-1}\right|=\frac{q}{1-q}\left|x_{n}-x_{n-1}\right| \\
& \leqslant \frac{q^{n}}{1-q}\left|x_{1}-x_{0}\right| .
\end{aligned}
$$

