
 

Let as a b a es

Proposition 5.12

Let feC2 Ca b with f zo Then we have

for all x t x E ca b Oct at the inequality

fCtx l t xo E tffx.lt l t ft Gt
and the inequality is strict if f o

Proofi
i Fix x t x CCa b Consider the function
gecklal

GA f t x i tho tfG Ct HfGolwith
geol gal o

g t f tx t l t x x Xo 30 Costel
Assume to the contrary

off gal gltmax 0 where Ostman 1

According to corollary 5 3 we have

g Ltmax O

Prop 5 It gives c c tuna 1 sit



O gli gltmax t g tunax l tuna

g G lttza getmad so

contradiction Thus gH E o and the
claim follows from the definition of g

Ii Analogously we obtain a contradiction
if f o if one assumes that gtfo 0

for some Oc to al
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Definition 5 5

A function f Ca b IR with the property
Gt is called convex and strictly convex

if we have
tf Xo F X E Ca b Os t e l

fax t l t xolctfcx.lt l t fCx
Remark 5 7
i Aparently f is strictly convex if and only
if the Epigraph of f

epi Cf Cx y x cCa b y fix CIR
is a strictly convex set
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function
I

t
i i
1 I x
Xo X

ii Prop 5.12 gives a convenient criterion
for the strict convexity off
Example 5 17

i The function fix 1 1 xe IR is convex
ii If f g Ca b IR are two convex

functions then f t g Ca b IR is also
convex with f i a b IR Kelly also

f fk
iii exp exp so therefore exp is strictly

convex

Iv Let flx x log x x o We have

f log x l f G o



therefore f is strictly convex according to
Prop 5.12

V For a fixed number a 1 let

flx xd expk log x so As

f x x x f x da 1 xd 2 so

f is strictly convex according to Prop 5.12

The property 1 7 also holds far more than
2 points

Proposition Jensen
Let f Ca b IR convex Then we have

for arbitrary points x i xn CCa b and numbers
0 et tn El with ti 1 the inequality

fffetixi E IItifki
Proof by Induction
I also 14 2 according to definition
N Ntl Let t.cl



set x ftp.xi
As f is convex we obtain

fl tix fax a t xo

Et ft t t Ifk
According to induction assumption we have

fGo f t xi E t
fail

and the claim follows
A

Example 5.18

For all 0 c x Xu Los 0 Ex in s 1
with a L we have

II xidi E.liXi
Proofi
As the function exp is convex the claim

follows from Prop 5.13



IIxidi II expkilogxi
exp II dilogxi

Pro B

g expfeogxi dixi

I

In particular we obtain for ai I Kien

I E th Xi

6 Numerical solution ofequations
6.1 A fixpoint theorem
Often one encounters the problem of solving
an equation of the fam fed x where

f a b R is a continuous function
We can use the following approximation method

Xu fkn a for n 1

If the sequence xn nea is well defined
and converges against a 3 E la b then 3 is



a solution of the above equation as from
continuity off we get

ya
7 finna fin fkn a ft

f X

fix

fad

X 42 to x

The following Proposition covers an important
case in which the above procedure converges
Proposition 6.1

Let D e R be a closed interval and f D IR

a differentiable function with fCD CD Furthermore

If I C 9 far so gel and all ED Let xoeD
be arbitrary and

Xue fkn i for u I

Then the sequence xn new converges against
a unique solution 3 ED of the equation f 3



The following error estimate holds

13 H E Ifk xn il Ef Ix x 1

Remark 6 l

The method converges faster for smaller q
Suppose we have to solve the equation FG o

where F is a differentiable function with
continuous derivative

set fed x EFG where F xx to

choose x close to solution 3 of FC37 0

f 7 3 We have f 6 1 0 thus

If4 71 is small for sufficiently close to x

Proof of Prop 6.1
i From the mean value theorem we obtain

If x f.CH Eqlx y1faaeexyeD
7lxu xnl lfCxn7 fCxn iYE9 Ixn xu l

and by induction over u we get
I Xu Xml E 9h1 x xd for u e IN

As
Xue Xo t

y Xk XK I



and the sequence xD converges
use for example quotiIt criterion the limit

3 i Lifes xn
exists Furthermore as D is closed 3 ED
and satisfies 3 f 3
ii uniqueness
suppose y is another solution of 2 fly
then we get

13 21 Ifa fCHI E 9 13 41
and from g al it follows that 13 71 0

therefore 3 2
iii error estimate
For all n z l and K2 1 we have

Xu k Xu 1k I l E 9KI Xu Xu il
As 7 Xu Ia xn Xu k i we get

13 xn l E of Hu Xu il Fa Hu xn il
E flx x I

I


