$$\begin{aligned} \mathcal{I}e^{\dagger} &-\infty < a < b < \infty \\ \frac{\operatorname{Proposition} 5.12:}{\operatorname{Zet} f \in C^{2}((a,b)) \text{ with } f'' \ge 0. \text{ Then we have } \\ for all x_{o} \ne x, \in (a,b), 0 < t < 1 \text{ the inequality } \\ f(tx_{i} + (1-t)x_{o}) \le tf(x_{i}) + (1-t)f(x_{o}), \quad (*) \\ \text{and the inequality is strict, if } f'' > 0. \\ \frac{\operatorname{Proof:}{1}}{1} \text{ is } x_{o} \ne x_{i} \in (a,b) \cdot \operatorname{Considev the function} \\ g \in C^{2}([o_{i}]): \\ g(t) = f(tx_{i} + (1-t)x_{o}) - (tf(x_{i}) + (1-t)f(x_{o})) \\ \text{with} \\ g(o) = g(1) = 0, \\ g''(t) = f''(tx_{i} + (1-t)x_{o})(x_{i} - x_{o})^{2} \geqslant 0, \ 0 \le t \le 1. \\ \text{Assume to the cantrary}_{i} \\ \max g(t) = g(t_{\max}) > 0, \quad \text{where } 0 < t_{\max} < 1. \\ \operatorname{According to Corollary} 5.3 we have \\ g'(t_{\max}) = 0 \\ \Rightarrow \operatorname{Prop. 5.11 gives } \exists e(t_{\max}, 1) \text{ s.t.} \end{aligned}$$

$$0 = q(1) = q(t_{max}) + q'(t_{max})(1 - t_{max}) + q''(t) \frac{(1 - t_{max})^2}{2} \ge q(t_{max}) > 0,$$

$$\Rightarrow contradiction. Thus q(t) \le 0 \text{ and the claim follows from the definition of q.}$$
ii) Analogously, we obtain a contradiction if f'' > 0, if are assumes that $q(t_0) = 0$ for some $0 < t_0 < 1.$

$$Definition 5.5:$$
A function $f: (a, b) \rightarrow \mathbb{R}$ with the property
(*) is called "convex"; and "strictly convex", if we have
$$\forall x_0 \neq x, e(a, b), 0 < t < 1:$$
 $f(t_{x_1} + (1 - t)x_0) < tf(x_1) + (1 - t)f(x_0).$

$$Remark 5.7:$$
i) Aparently, f is (strictly) convex if and only
if the "Epigraph" of f,
 $epi(f) := \{(x, y) | xe(a, b), y \ge f(x)\} < \mathbb{R}^2,$
is a (strictly) convex set.

- iii) exp"=exp>0; therefore, exp is strictly convex.
- iv) Let $f(x) = x \log x$, x > 0. We have $f'(x) = \log x + 1$, $f''(x) = \frac{1}{x} > 0$,

therefore f is strictly convex according to
Prop. 5.12.
V) For a fixed number
$$\alpha > 1$$
, let
 $f(x) = x^{\alpha} = \exp(\alpha \log x)$, $x > 0$. As
 $f'(x) = \alpha x^{\alpha-1}$, $f''(x) = \alpha(\alpha-1)x^{\alpha-2} > 0$,
f is strictly convex according to Prop. 5.12.
The property (x) also holds for more than
2 points.
Proposition 5.13 (Jensen):
Zet f: $(a,b) \rightarrow \mathbb{R}$ convex. Then we have
for arbitrary points $x_{1,1}, \dots, x_N \in (a,b)$ and numbers
 $0 \le t_1, \dots, t_N \le 1$ with $\sum_{i=1}^N t_i = 1$ the inequality
 $f\left(\sum_{i=1}^N t_i x_i\right) \le \sum_{i=1}^N t_i f(x_i)$
Proof (by Induction):
N-> N+1: Zet $t_i < 1$

set
$$x_o = \sum_{i=2}^{N+1} \frac{t_i}{1-t_i} x_i$$
.
As f is convex, we obtain
 $f(\sum_{i=1}^{N+1} t_i x_i) = f(t_i x_i + (1-t_i) x_o)$
 $\leq t_i f(x_i) + (1-t_i) f(x_o)$
According to induction assumption we have
 $f(x_o) = f(\sum_{i=2}^{N+1} \frac{t_i}{1-t_i} x_i) \leq \sum_{i=2}^{N+1} \frac{t_i}{1-t_i} f(x_i)$
and the claim follows.
Example 5.18:
For all $0 < x_1, \dots, x_n < \infty, 0 \leq \alpha_{1,1}, \dots, \alpha_n \leq 1$
with $\sum_{i=1}^{n} \alpha_i = 1$ we have
 $\frac{\prod_{i=1}^{n} x_i^{\alpha_i}}{\sum_{i=1}^{n} \alpha_i x_i}$

$$\prod_{i=1}^{n} x_i^{d_i} = \prod_{i=1}^{n} \exp(x_i \log x_i)$$

$$= \exp\left(\sum_{i=1}^{n} \alpha_i \log x_i\right)$$

$$\underset{i=1}{Pop 5.15} \prod_{i=1}^{n} \alpha_i \exp(\log x_i) = \sum_{i=1}^{n} \alpha_i x_i$$

$$\prod_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \exp(\log x_i) = \frac{1}{1}, i \le n,$$

$$\prod_{i=1}^{n} \prod_{i=1}^{n} x_i \le \frac{1}{1} \sum_{i=1}^{n} x_i$$

$$\frac{S6. Numerical solution of equations}{S6.1 \ A \ fix-point \ Heorem}$$

$$Often, one encounters the problem of soloing an equation of the form f(x) = x, where f: [a,b] \longrightarrow R$$
 is a continuous function.
We can use the following approximation method:

$$x_n := f(x_{n-1}) \ far \ n \ge 1$$
If the sequence $(x_n)_{n\in\mathbb{N}}$ is well-defined and converges against a $3 \in [a,b], \ Hen \ 3 \ is$

a solution of the above equation, as from
continuity of
$$f$$
 we get
 $\overline{f} = \lim_{n \to \infty} x_n = \lim_{n \to \infty} f(x_{n-1}) = f(\overline{f})$
 $f(x_1)$
 $f(x_2)$
 $f(x_3)$
 $f(x_4)$
 $f(x_5)$
 $f(x_6)$
 $f(x_6)$

The following error estimate holds
$$|\tilde{z} - x_n| \leq \frac{9}{1-9} |x_n - x_{n-1}| \leq \frac{9^n}{1-9} |x_i - x_n|$$

Remark 6.1:
The method converges faster for smaller q.
Suppose we have to solve the equation
$$F(x)=0$$
,
where F is a differentiable function with
continuous derivative.
 \rightarrow set $f(x) := x - \frac{1}{c}F(x)$, where $F'(x^{*})=:c \neq 0$
Choose x^{*} close to solution if $f(x)=:c \neq 0$
Choose x^{*} close to solution if $f(x)=0$, thus
 $|f'(x)|$ is small for x sufficiently close to x^{*} .
Proof of Prop. 6.1:
i) From the mean value theorem we obtain
 $|f(x) - f(x)| \leq q |x-y|$ for all $x, y \in D$
 $\Rightarrow |x_{uti} - x_{u}| = |f(x_{u}) - f(x_{u-1})| \leq q |x_{u} - x_{u-1}|$
and by induction over u we get:
 $|x_{uti} - x_{u}| \leq q^{u} |x_{u} - x_{u}|$,

and the sequence
$$\sum_{k=0}^{\infty} (x_{k+1} - x_k) \text{ converges}$$

(use for example quotient criterion), the limit
 $\overline{\gamma} := \lim_{n \to \infty} x_n$
exists. Furthermore, as D is closed, $\overline{\gamma} \in D$,
and satisfies $\overline{\gamma} = f(\overline{\gamma})$.
ii) "uniqueness":
suppose γ is another solution of $\gamma = f(\gamma)$,
then we get
 $|\overline{\gamma} - \gamma| = |f(\overline{\gamma}) - f(\gamma)| \le q|\overline{\gamma} - \gamma|$,
and from $q < 1$ it follows that $|\overline{\gamma} - \gamma| = 0$,
there fore $\overline{\gamma} = \gamma$.
iii) "error estimate":
For all $n \ge 1$ and $k \ge 1$ we have
 $|X_{n+k} - X_{n+k-1}| \le q^{k} |x_{n} - x_{n-1}|$.
As $\overline{\gamma} - x_{n} = \sum_{k=1}^{\infty} (x_{n+k} - x_{n+k-1})$, we get
 $|\overline{\gamma} - \chi_{n}| \le \sum_{k=1}^{\infty} q^{k} |x_{n} - x_{n-1}| = \frac{q}{1-q} |x_{n} - x_{n-1}|$.